If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-24-36x=0
a = 6; b = -36; c = -24;
Δ = b2-4ac
Δ = -362-4·6·(-24)
Δ = 1872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1872}=\sqrt{144*13}=\sqrt{144}*\sqrt{13}=12\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-12\sqrt{13}}{2*6}=\frac{36-12\sqrt{13}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+12\sqrt{13}}{2*6}=\frac{36+12\sqrt{13}}{12} $
| 2) 8(m–3)=56 | | 5(3x-20)=-10. | | 2x+4-5xx=5 | | 72g=36 | | 3=(18+n,44) | | 2x+x+1+x^2=336 | | 3x+10=164x+1 | | 4(n-5)+8(n+5)=-40 | | 35=2(2+5m)-3(m+6) | | 28-5x=8-3x | | 20-3x=6+x | | -6n-8(2n+1)=-162 | | 20-3x=6x | | 220=5(6x-4) | | -8(n/4)=-12 | | 2(3x+4=20=12x | | 528/z=44 | | 180=-20x+23+-16x+13 | | 10(3-x=20 | | 6v+3=-9 | | 6+6(a)=-18 | | 6+6(a)=18 | | 95=9x-5+2x+23 | | 9a+a-9=1 | | 17x•14=4x-2 | | 75a=-3 | | v/4/7=11/12 | | 1=78-n | | 9-6(x)=-45 | | 142=10^x-3 | | 142=10^x-3142=10x−3. | | 50=10^x-3 |